Aller au contenu

Messages recommandés

Posté(e) (modifié)

Bonjour à tous,

J'ai une petite question : dans un exercice sur les équations différentielles, on propose de modéliser le nombre de ménages équipés d'un ordinateur en France à partir de 1980 par le modèle de Verhulst. D'après ce modèle, f(t) la fonction qui donne ce nombre de ménage, est solution de l'équation y' = 0,022y(20 - y)

On trouve à la fin de la résolution de l'exercice que d'après ce modèle, un peu moins de 20 millions de ménages devraient être équipés d'un ordinateur en 2014. Or l'INSEE nous informe qu'en réalité, plus de 22 millions de ménages possédaient un ordinateur en 2014. 

La question est la suivante : "Expliquer pourquoi l'estimation faite par le modèle de Verhulst est incorrecte" . 

Avez-vous une idée ? J'avoue que je sèche...🤔

Modifié par C8H10N4O2
  • E-Bahut
Posté(e)

Bonjour,

Sans garantie : A cause du terme en 20-y, le maximum possible donné par ce modèle est y=20. Donc, on ne pourrait pas dépasser 20 millions de ménages alors qu'en 2014 il y en avait 28,8 millions.

Posté(e) (modifié)
Il y a 7 heures, julesx a dit :

Bonjour,

Sans garantie : A cause du terme en 20-y, le maximum possible donné par ce modèle est y=20. Donc, on ne pourrait pas dépasser 20 millions de ménages alors qu'en 2014 il y en avait 28,8 millions.

Ça me paraît tout à fait juste, bravo !  Effectivement, en creusant un peu, le modèle de Verhulst est employé pour modéliser des phénomènes exponentiels dans un premier temps puis qui convergent vers une limite (par opposition (en simplifiant) à une exponentielle à l'infini comme le suggère Malthus dans le cadre de la croissance de populations). Cela me semble cohérent avec votre idée. 👍

Post scriptum : mais au fait en quoi le terme en 20-y donne un maximum possible de y=20 ?🤔  Pour info, la fonction solution de l'équation différentielle ci-dessus avec la condition initiale f(0) = 0,01 (10 000 ménages équipés d'un ordinateur en 1980) est image.png.962d6c0f636d6e98dcea97cf90ec55e3.png 

On a bien f(t) qui tend vers 20 quand t tend vers l'infini.

Modifié par C8H10N4O2
  • E-Bahut
Posté(e)
il y a 38 minutes, C8H10N4O2 a dit :

mais au fait en quoi le terme en 20-y donne un maximum possible de y=20 ?

Méthode "bourrin" : On résout l'équation différentielle en tenant compte de y forcément positif et de la condition initiale choisie pour y(0). On voit qu'en faisant tendre t vers l'infini, y tend vers 20.

Méthode "subtile"(?) : y'=0,022*y(20-y) => y' positif tant que y<20, donc y croit jusqu'à la valeur 20. Au delà, y'<0 donc y décroit a priori. Donc y ne peut pas dépasser 20.

Pour info, je n'ai rien inventé, j'ai regardé un peu ce qui se disait sur la toile. Ton problème est traité en particulier dans ce document à la page 52

http://faccanoni.univ-tln.fr/user/enseignements/2011_2012_M231_L1PC.pdf

Je n'avais pas vu ta modification ! Donc, à part ma méthode "subtile", ma réponse ne t'apporte rien de plus.

Rejoindre la conversation

Vous pouvez publier maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous maintenant pour publier avec votre compte.

Invité
Répondre à ce sujet…

×   Collé en tant que texte enrichi.   Coller en tant que texte brut à la place

  Seulement 75 émoticônes maximum sont autorisées.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédent a été rétabli.   Vider l’éditeur

×   Vous ne pouvez pas directement coller des images. Envoyez-les depuis votre ordinateur ou insérez-les depuis une URL.

Chargement
×
×
  • Créer...
spam filtering
spam filtering