Aller au contenu

Tableau de variation


Missvictoria

Messages recommandés

Bonjour j'ai un exercice de mathématique et je n'y arrive pas du tout. Quelqu'un pourrait-il m'aider s'il vous plait? Merci.

Soit f une fonction définie sur l'intervalle I= [-5 ; 5] dont le tableau de variation est :

Voir le document joint ci-dessous.post-60444-0-20819100-1350812733.jpg

1) Dans un repère, dessiner une courbe représentative C, cohérente avec ce tableau de variation.

2) Sur l'intervalle I, on définit les fonctions g, h et k par g=2f, h=-f, k=f+3. Donner les variations de chacune de ces trois fonctions et tracer les courbes représentatives dans le repère précédent.

Indiquer comment on peut obtenir la représentation graphique de la fonction v définie sur I par v(x)= |f(x)|.

3) Quel est le plus grand ensembe D (éventuellement une réunion d'intervalles) sur lequel on peut définir la fonction m= 1/f ? Sur cet ensemble donner les variations de la fonction m et représenter les fonctions f et m dans un nouveau repère.

4) Quel est le plus grand ensemble E (éventuellement une réunion d'intervalles) sur lequel on peut définir la fonction r= √f ? Sur cet ensemble donner les variations de la fonction r et représenter r dans le repère de la question 3.

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

post-60444-0-20819100-1350812733.jpg

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

Pour v(x)=|f(x)|, si f(x)>0 v(x)=f(x) alors la courbe Cv est celle de Cf, si f(x)<0 v(x)=-f(x) alors la courbe de Cv est la symétrique par rapport à l'axe des abscisses de Cf

Pour m(x)=1/f(x) le domaine de définition de m est celui de f, diminué des x tels que f(x)=0.

Pour r(x)=sqrt(f(x)), le domaine est celui où f(x)>=0.

Avec ces rappels, tu dois terminer tranquillement.

Au travail.

Lien vers le commentaire
Partager sur d’autres sites

  • 2 semaines plus tard...

bonsoir,

j'ai également cet exercice à faire.pour la question 1 et 2 j'ai fais ce qui suit et j'aimerais savoir si cela est correct.

je met le fichier en pièce jointe (il ne s'agit que d'un brouillon)

donc g=2f : g et f ont le même sens de variation

h=-f : les fonction f et h ont des sens de variation contraire dans l'intervalle I.

k=f+3: les fonction k et f ont le même sens de variation.

v(x) = valeur absolue de f(x)

si f(x)>o alors v(x)=f(x), la représentation graphique de v(x) est celle de f(x)

si f(x)<o alors v(x)=-f(x) les courbes représentative de v(x) et f(x) sont symétriques par rapport à l'axe des abscisses.

question 3.

le plus grand ensemble D sur lequel on peut définir la fonction m est celui de f dont on enlevera les valeurs de x tel que f(x)=0

D=[5;11;5]

les fonctions m et f(x) varient en sens contraire sur l'intervalle I

Mais là j'ai un problème pour tracer la courbe représentative de m.

merci de votre aide

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

post-49843-0-72351400-1352139741.jpg

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

Bonjour Gandalf,

Le sujet est assez mal posé pour être franc. Pas infaisable mais mal posé.

D'ailleurs, tu es en seconde ou première (vu l’exercice, je dirai seconde) ?

Déjà, pour la fonction f. Pourquoi choisir une fonction si compliquée ? Un fonction affine par morceau suffit amplement (surtout pour faire la courbe de m). Et comme ça, tu auras un jolie graphique^^ (et n'oublie pas les flèches et les labels sur les axes).

Par contre, la production du graphique de m est impossible sans poser clairement l'expression de f. D'où l'utilisation d'une fonction qui ne soit pas trop compliqué à expliciter (comme une fonction affine par morceau). De là, il faut écrire les équations de f(x) sur chaque domaine, puis passer à l'inverse.

Mais, c'est assez long...

Lien vers le commentaire
Partager sur d’autres sites

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

×
×
  • Créer...
spam filtering
spam filtering