Ludmillamaths Posté(e) le 11 octobre 2014 Signaler Posté(e) le 11 octobre 2014 Bonsoir! J'ai un exercice à faire sur les pourcentages et evolutions successives niveau 1ère. J'ai réussi les deux premières questions mais je bloque pour la 3ème qui est: 3) le prix d'un article a baissé deux fois de suite de x%. Au total, il a diminué de 19% Voila ce que j'ai essayé mais je ne sais pas si c'est juste .. 1ère evolution: baisse (1-t/100) 2e: baisse aussi donc: (1-t/100) (1-t/100) = (1-19/100) (1-t/100)^2 = (1-19/100) (1-t/100)^2 = 0,81 Et la je sais pas comment il faut faire j'ai pensé a l'identité remarquable (a-b)^2.. Merci de m'aider
E-Bahut Barbidoux Posté(e) le 11 octobre 2014 E-Bahut Signaler Posté(e) le 11 octobre 2014 x étant le pourcentage de baisse alors 1-x est le coefficient multiplicatif permettant de calculer le nouveau prix. S’il a baissée de x% deux fois alors le coefficient multiplicatif permettant de calculer le nouveau prix est (1-x)^2 et le pourcentage de baisse 1-(1-x)^2 soit 2*x-x^2. 2*x-x^2=0,19 ==> x^2-2*x+0.19=0 équation du second degré qui admet deux racines x=0.1 et x=1.9. La valeur recherchée appartenant à [0,1] la réponse est 0.1= 10%
Ludmillamaths Posté(e) le 11 octobre 2014 Auteur Signaler Posté(e) le 11 octobre 2014 On ne peut pas tout simplement repartir de : (1-t/100)^2 = 0,81 ? Car je suis un peu perdue avec votre méthode :/
E-Bahut Barbidoux Posté(e) le 11 octobre 2014 E-Bahut Signaler Posté(e) le 11 octobre 2014 On ne peut pas tout simplement repartir de : (1-t/100)^2 = 0,81 ? Car je suis un peu perdue avec votre méthode :/
Ludmillamaths Posté(e) le 11 octobre 2014 Auteur Signaler Posté(e) le 11 octobre 2014 Ah.. Merci.. Pour x^2 - 2x + 0,19 = 0 Il faut ps calculer le discriminant ?
E-Bahut Barbidoux Posté(e) le 12 octobre 2014 E-Bahut Signaler Posté(e) le 12 octobre 2014 Oui il faut résoudre cette équation du second degré et calculer des racines
Ludmillamaths Posté(e) le 12 octobre 2014 Auteur Signaler Posté(e) le 12 octobre 2014 x^2 - 2x + 0,19 = 0 Discriminant = b^2 - 4ac = (-2)^2 - 4x1x0,19 = 4 - 0,76 = 3,24 ==> positif donc deux solutions. x1 = (-b + Vdiscriminant) / 2a x1 = (2 + V3,24) / 2x1 x1 = 3,8 / 2 x1 = 1,9 x2 = (-b - Vdiscriminant) / 2a x2 = (2 - V3,24) / 2x1 x2 = 0,2 / 2 x2 = 0,1 C'est ça ?
E-Bahut Barbidoux Posté(e) le 12 octobre 2014 E-Bahut Signaler Posté(e) le 12 octobre 2014 oui c'est cela...
Messages recommandés
Archivé
Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.