Aller au contenu

Suites Bloqué Dm


Étienne9

Messages recommandés

Posté(e)

Dites, tout à l'heure ce n'est pas une erreur ici :

<==> 1/3*Un + n-2 => n-2 (Inégalité inchangée par ajout d'un scalaire de R).

<==> Un+1 => n-3 (Par définition de (Un)n)

Comment vous êtes passer de -2 à -3 dans le membre de droite ?????

Et pour ce qui est de maintenant, l'équation précédent c'est u(n)>= n-3 ??

  • E-Bahut
Posté(e)

Dites, tout à l'heure ce n'est pas une erreur ici :

<==> 1/3*Un + n-2 => n-2 (Inégalité inchangée par ajout d'un scalaire de R).

<==> Un+1 => n-2 (Par définition de (Un)n)

Comment vous êtes passer de -2 à -3 dans le membre de droite ?????

Et pour ce qui est de maintenant, l'équation précédent c'est u(n)>= n-3 ??

Posté(e)

Pour pour moi la limite de U(n) est supérieure à celle de n-3 et quand n il tend vers l'infini, n-3 tend vers l'infini et donc u(n) tend vers l'infini quand n tend vers l'infini...

  • E-Bahut
Posté(e)

Pour pour moi la limite de U(n) est supérieure à celle de m-3 et quand m il tend vers l'infini, m-3 tend vers l'infini et donc u(n) tend vers l'infini quand n tend vers l'infini...

[/quote

Oui, mais ça a un nom ! Le théorème de gendarmes (c'est aussi parfois, le théorème de comparaison pour les suites).

Je vais profiter du soleil. A plus tard.

Posté(e)

Donc je marque ce que j'ai dis et je marque que c'est le théorème des gendarmes c'est ça ?

Je me disais bien que c'était le théorème des gendarmes mais je n'étais pas sûr !

Posté(e)

J'ai tout réussi sauf pour le moment la dernière question, je vais tout recopier car je suis sûr d'avoir tout bon...Tout est cohérent par rapport à ce qu'à donner Barbidoux et ce que demande les annales.

Cependant j'ai mis une faute de Barbidoux,Vn= (-25/2)/(1/3)n

C'est un produit à droite et pas une division...

Faut que je réfléchisse pour la dernière question !

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

×
×
  • Créer...
spam filtering
spam filtering