Aller au contenu

Dm De Maths Niveau Ts


Aki

Messages recommandés

  • E-Bahut
Posté(e)

Bonjour!

Les profs ne manquent jamais une occasion de nous bouffer une journée avec des Dm... ^^ M'enfin, on va pas s'en plaindre, y a le bac dans pas longtemps :blink:

J'ai un petit soucis avec la première question de cet exercice:

post-22765-1240912643_thumb.jpg

Je sais que pour la question 1 il "suffit" de démontrer qu'un des points est barycentre des trois autres. Par contre pour les deux autres questions je ne vois pas trop comment faire...

Mes soucis continuent avec le deuxième exercice:

post-22765-1240912761_thumb.jpg

Là je suis perdu pour les deux questions =S

Ca serait donc sympa de me donne quelques pistes, ainsi que les propriétés que je devrais utiliser pour résoudre ces problèmes.

Je vous remercie d'avance :)

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

post-22765-1240912643_thumb.jpg

post-22765-1240912761_thumb.jpg

Posté(e)
Bonjour!

Les profs ne manquent jamais une occasion de nous bouffer une journée avec des Dm... ^^ M'enfin, on va pas s'en plaindre, y a le bac dans pas longtemps :blink:

J'ai un petit soucis avec la première question de cet exercice:

post-22765-1240912643_thumb.jpg

Je sais que pour la question 1 il "suffit" de démontrer qu'un des points est barycentre des trois autres. Par contre pour les deux autres questions je ne vois pas trop comment faire...

1)En vecteurs : GJ = GH + HJ = BA +IB = IA : AIGJ est un parallélogramme, les points A, I, G, J sont coplanaires.

2) IC = JH ; ICHJ est un parallélogramme...

FO.IJ =FO.CH (O pour oméga) or (FO) est médiane du triangle isocèle FCH (FC=FH car diagonales de faces du cube)

Mes soucies continuent avec le deuxième exercice:

post-22765-1240912761_thumb.jpg

Là je suis perdu pour les deux questions =S

Appelle H le projeté de B sur (AA')

A'B' = A'A + AB + BB' = AB + A'A + HA' = AB + HA (en vecteurs)

Supposons vect AH et n de même sens : vect(HA) = -ll HAll vect(n) et AB.n = AH.n = llAHll

donc A'B' = AB - llHAlln = AB - (AB.n)n

remarque : si on change n en u=-n alors (AB.n)n reste inchangé (en effet : (AB.u)u = (AB.(-n))(-n) = (AB.n)n

A'B'.A'C' : il suffit de développer en utilisant le résultat précédent.....

Pour conclure A'B'C' rectangle en A' équivaut à A'B'.A'C' = 0 équivaut à ...... AB.n=0 ou AC.n=0 ......immédiat.

Ca serait donc sympa de me donne quelques pistes, ainsi que les propriétés que je devrais utiliser pour résoudre ces problèmes.

Je vous remercie d'avance :)

  • E-Bahut
Posté(e)

Exo 1

-----------------------------

Les faces en vis à vis d'un cube sont //

Les droites appartenant à deux plans // le sont

==> JA//IG et JG//AI ==> AJGI est une parallélogramme donc A, J G et I sont coplanaires

-----------------------------

JH//IC et JH=IC ==> JHCI est un parallélogramme et JI//HC

-----------------------------

FH=FC et FΩ est la médiatrice de HC donc perpendiculaire à HC et comme JI//HC ==> FΩ perpendiculaire à JI

-----------------------------

Exo 2

-----------------------------

Relations vectorielles

A'B'=A'A+AB+BB'=AB+AA'-B'B=AB+||BA||*Cos(BA*AA')*n=AB-||BA||*Cos(BA.A'A)*n=AB-(AB.n)*n

On démontre de même

A'C'=AC-(AC.n)*n

-----------------------------

A'B'.A'C'=(AB-(AB.n)*n)*(AC-(AC.n)*n)=AB.AC-(AB.n)*AC.n-(AC.n)*AB.n+(AB.n)*(AC.n)*n.n

et comme n.n=1 ==> A'B'.A'C'=AB.AC-2*(AB.n)*(AC.n)+(AB.n)*(AC.n)

comme AB et AC sont perpendiculaires A'B'.A'C'=-(AB.n)*(AC.n) et pour qu'un produit soit nul il faut et il suffit qu'un de ses termes le soit ==> AB perpendiculaire à n donc // à P et AC perpendiculaire à n donc // à P

  • E-Bahut
Posté(e)

Merci pour vos réponses.

Je m'y remets demain matin à la première heure =) (ou plutôt ce matin)

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

×
×
  • Créer...
spam filtering
spam filtering