Aller au contenu

Physique TS condensateur


LaToine

Messages recommandés

Voici l'énoncé, merci de votre aide:

Un générateur de f.é.m E = 9 V et de résistance interne négligeable charge un condensateur de capacité C = 125 nF, initialement non chargé, à travers une résistance de valeur R= 82.0 kOhms.

Question:

1) Etablir l'équation différentielle à laquelle obéit la chargé q de l'armature du condensateur ?

Vers quelle limite tend la valeur de q?

2) Trouver l'expression de q(t) en résolvant l'équation différentielle.

3) En déduire les expressions de i(t) et u(t) aux bornes du condensateur.

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

alors déjà dans une équa diff, tu as un dérivée premiere (si pas une dérivée seconde) qui représente la variation de quelque chose, qu'est ce qui va varier dans ton systeme?

Aussi non, ouvre ton cours ! tu as surement des exercices de ce genre déjà résolus :) enfin trouve déjà l'équa diff :)

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

bon je vais te faire un petit topo sur les equa diff :

1) La réponse à une équatif est toujours une fonction (une infinité de fonction en faite car il y a une constante qui varie a l'infini)

2) Dans un probleme de Cauchy (si tu as vu ca?) la solution est alors unique

3) Une équation diff a variable séparable du premier degré (ex : y'=y/x)

Pour résoudre ca :

identifier deux fonctions : g(y) et f(x) tel que g(y)f(x) te donne le membre de droite.

ici : g(y) = y et f(x) = 1/x

1ere solution : la/les racine(s) de g(y), ici 0

seconde solution

On met tous les y du meme coté

y/y'=1/x

On integre les deux membres par rapport a x

Int (y/y') dx = Int (1/x) dx

==> ln |y| = ln |x| + constante

y=x.e^constante

y=x.constante

voila,

en esperant t'avoir aidé sur la résolution d'une equa diff

Lien vers le commentaire
Partager sur d’autres sites

Archivé

Ce sujet est désormais archivé et ne peut plus recevoir de nouvelles réponses.

×
×
  • Créer...
spam filtering
spam filtering