Aller au contenu
C8H10N4O2

Notion de fonction

Messages recommandés

Bonjour à tous,

Je sollicite vos lumières à propos de la définition d'une fonction. Minimalement, je dirais que c'est une relation entre deux variables (numériques ou autres) telle que la première détermine de manière unique la seconde. Ainsi le rayon du disque détermine de manière unique sa surface : la surface est fonction du rayon. Ce qui n'est pas le cas du périmètre d'un rectangle vis-à-vis de sa surface : un périmètre de 32 unités de longueur peut donner une surface de 60 (L= 10 et l = 6) comme de 48 par exemple (L= 12 et l = 4). Ici la surface n'est pas fonction du périmètre.

De même pour des variables non numériques : un annuaire associe un utilisateur unique à son numéro de téléphone. L'annuaire est donc une fonction entre l'usager et son numéro.

Ce qui me gène dans cette définition, c'est qu'elle ne tient pas vraiment par exemple lorsqu'on trace l'évolution d'un cours de bourse en fonction du temps, ou celle de la température en fonction du temps. Ici, il me semble qu'il n'existe pas d'expression dans laquelle apparaît la variable t et qui nous permettrait de connaître des valeurs univoques du cours de bourse ou de la température. Ces courbes sont tracées empiriquement et a posteriori sans relation de dépendance entre les deux variables mises en relation. Et pourtant on dit bien que ces deux variables sont fonction du temps...

Je suis un peu perplexe, qu'en pensez-vous ?

Modifié par C8H10N4O2

Partager ce message


Lien à poster
Partager sur d’autres sites

Une fonction f est une relation qui, à chaque élément d’un ensemble de départ (domaine de définition de la fonction), fait correspondre au plus un élément d’un autre ensemble d’arrivée dit image de l’ensemble de départ par la fonction f.  La relation liant les deux ensembles peut être explicite (expression mathématique) ou implicite (graphe ou tableau de valeurs).

Un des but de la plupart des recherches en science est l’élaboration de modèles mathématiques explicites capables d’interpréter le comportement des systèmes (théorisation du champ expérimental) afin d’en prévoir le comportement dans des conditions différentes de celles observées. (Prévisions météorologiques, climat, santé, génétique, économie etc... ).

Partager ce message


Lien à poster
Partager sur d’autres sites
Il y a 4 heures, Barbidoux a dit :

Une fonction f est une relation qui, à chaque élément d’un ensemble de départ (domaine de définition de la fonction), fait correspondre au plus un élément d’un autre ensemble d’arrivée dit image de l’ensemble de départ par la fonction f.  La relation liant les deux ensembles peut être explicite (expression mathématique) ou implicite (graphe ou tableau de valeurs).

Un des but de la plupart des recherches en science est l’élaboration de modèles mathématiques explicites capables d’interpréter le comportement des systèmes (théorisation du champ expérimental) afin d’en prévoir le comportement dans des conditions différentes de celles observées. (Prévisions météorologiques, climat, santé, génétique, économie etc... ).

Merci pour cette réponse éclairante. 

Dire d'une variable y qu'elle est fonction du temps alors qu'aucune expression mathématique faisant apparaître t n'existe permettant de déterminer les valeurs de y n'est donc pas un abus de langage ?

Partager ce message


Lien à poster
Partager sur d’autres sites
Il y a 21 heures, julesx a dit :

Oui, car la notion de fonction ne se réduit pas à la simple définition mathématique. Voir par exemple ici :

https://www.larousse.fr/dictionnaires/francais/fonction/34452

Merci mais je ne vois pas bien en quoi le cas de deux variables non liées par une expression est pris en compte par une des définitions données dans ce lien 

Partager ce message


Lien à poster
Partager sur d’autres sites

Si on cherche un peu plus dans le lien, on trouve en particulier Être fonction de quelque chose, de quelqu'un, dépendre d'eux.

On parle bien de deux ou plusieurs variables liées sans relation directe. Moi, je vois par exemple, le poids d'un enfant est fonction de son age et de son sexe. C'est bien le cas, sans qu'il y ait la moindre expression mathématique au départ. Après, on peut toujours essayer des modélisations...

Partager ce message


Lien à poster
Partager sur d’autres sites
Il y a 16 heures, julesx a dit :

Si on cherche un peu plus dans le lien, on trouve en particulier Être fonction de quelque chose, de quelqu'un, dépendre d'eux.

On parle bien de deux ou plusieurs variables liées sans relation directe. Moi, je vois par exemple, le poids d'un enfant est fonction de son age et de son sexe. C'est bien le cas, sans qu'il y ait la moindre expression mathématique au départ. Après, on peut toujours essayer des modélisations...

Oui effectivement, l'exemple des courbes de croissance et de poids dans le carnet de santé sont de bons exemples : taille et poids sont fonction du temps alors que le tracé de la courbe est intégralement empirique et nous n'avons pas de relation ou la variable t déterminerait strictement les deux autres variables.

Partager ce message


Lien à poster
Partager sur d’autres sites

Rejoindre la conversation

Vous pouvez publier maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous maintenant pour publier avec votre compte.

Invité
Répondre à ce sujet…

×   Collé en tant que texte enrichi.   Coller en tant que texte brut à la place

  Seulement 75 émoticônes maximum sont autorisées.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédent a été rétabli.   Vider l’éditeur

×   Vous ne pouvez pas directement coller des images. Envoyez-les depuis votre ordinateur ou insérez-les depuis une URL.

Chargement

×
×
  • Créer...