Aller au contenu
C8H10N4O2

intégration

Messages recommandés

Bonjour à tous! 

Voici des expressions à intégrer par changement de variable : ∫sin3x.dx (bornes de 0 à pi/2) et ∫dx / (sin2x.cos2x) (bornes : de pi/6 à pi/3 )

L'auteur de mon manuel fait le commentaire suivant, qui m'est très obscur, j'ai donc besoin de votre aide pour le déchiffrer : pour la 1ère, "l'élément différentiel étant pair, on obtient une expression rationnelle u en posant u= cos (x)" ; et à propos de la seconde : "on pose cette fois t=tan (x) car l'élément différentiel est invariant par le changement de x en (x+pi)".

Manifestement, je ne perçoit pas très bien ce qu'il faut voir pour effectuer un changement de variable judicieux. Sinon, une fois les nouvelles variables posées, les calculs ne me posent pas de soucis. 

Merci d'avance pour votre éclairage !

Modifié par C8H10N4O2

Partager ce message


Lien à poster
Partager sur d’autres sites

Petite remarque (tardive !).

En ce qui concerne l'intégrale de sin2x.cos2x, je suppose que l'auteur tenait à en faire une application de la règle de Bioche. Mais, à moins que je me sois fourvoyé, je trouve que l'intégration de la fonction en t que l'on obtient est loin d'être immédiate. On y arrive, mais...

Remplacer sin2x.cos2x par sin2(2x)/4, puis par [1-cos(4x)]/8 donne le résultat beaucoup plus rapidement. Mais comme l'auteur voulait qu'on procède par changement de variable...

Partager ce message


Lien à poster
Partager sur d’autres sites

Bonjour Julesx,

En posant t=tan (x) , on a dt = dx/cos2x .

1/sin2x devient quant à lui (1+t2)/t2 , soit 1+ 1/t2 . On obtient dès lors la primitive [t -(1/t) ] entre les bornes 1/√3 et √3

Bonne journée 

 

Partager ce message


Lien à poster
Partager sur d’autres sites

Oups, au temps pour moi, j'avais "zappé" le signe de fraction /, ce qui m'amenait à intégrer sin2x.cos2x au lieu de 1/(sin2x.cos2x). Évidemment, là, ça change tout et l'utilisation du changement de variable se justifiait parfaitement. Merci pour la rectification et bonne journée également.

 

Modifié par julesx

Partager ce message


Lien à poster
Partager sur d’autres sites

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant

×