Aller au contenu

Cinématique


mwilli
 Share

Messages recommandés

Bonsoir à tous,

S'il vous plaît, merci de votre aide pour cet exercice:

Une voiture démarre au feu vert situé au point O et s'arrête au feu rouge situé au point B après avoir parcouru une distance D=650 m. Le mvt de la voiture comprend 3 phases:

- le tronçon OO1 de longueur d1, de durée t1, d'accélération a1, de vitesse à sa fin v1;

- le tronçon O1O2 de longueur d2, de mvt uniforme de durée t2=20s;

- le tronçon O2B de longueur d3, de mvt uniformément retardé, d'accélération a3 et de durée t3.

La durée totale des 3 phases est t=45s. Sachant que d1=4d3, calculer ls durées t1 et t2, les accélérations a1 et a2 et les distances d1, d2 et d3.

D'avance merci pour vos explications détaillées, comme d'habitude.

Cordialement

 

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

Bonsoir,

 

il y a 50 minutes, mwilli a dit :

La durée totale des 3 phases est t=45s. Sachant que d1=4d3, calculer ls durées t1 et t2, les accélérations a1 et a2 et les distances d1, d2 et d3.

Je suppose que c'est :

  • calculer les durées t1 et t3 ?
  • les accélérations a1 et a3 ?
Lien vers le commentaire
Partager sur d’autres sites

Merci beaucoup Denis Camus: autant pour moi, vous avez absolument raison. Bien que j'aie recopié l'énoncé tel qu'on me l'a refilé, la logique élémentaire milite en faveur de ce que vous dites.

Donc merci à vous de m'aider à résoudre le problème; et merci à tous de votre aide.

Cordialement

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

J'ai pas avancé beaucoup. J'ai juste posé quelques équations, mais pour le moment, je cale :

d1 = (1/2) * a1 * t12.

d2 =20 * v1.

d3 = (1/2) * a3 *t32.

Comme d1 = 4d3. ===> d1 = 2a3 * t32.

d1 + d2 + d3 = 650 ===>  2 * a3 * t32 + 20 * v1 + (1/2) * a3 * t3= 650 ===> (5/2) * a3 * t32 + 20 * v1 =650

ou peut-être dans l'autre sens :

Comme d1 = 4d3 ===> d3 = (1/8) * a1 * t12

et (1/2) * a1 * t12 + 20 * v1 + (1/8) * a1 * t12 = 650

(5/8) * a1 * t12 + 20 * v=650 = (5/8) * a1 * t12 + 20 * a1 * t=650 de manière à n'avoir que des indices 1.

 

Lien vers le commentaire
Partager sur d’autres sites

  • E-Bahut

En reprenant et en complétant la démarche de Denis :

Relations au point O1

v1=a1*t1 [1]

d1=1/2*a1*t1² [2]

Relation au point O2

d2=20*v1 (conservation de la vitesse acquise au point O1) [3]

Relations au point B

a3*t3=-v1 (vitesse au point O2=v1, vitesse nulle au point B) [4]

d3=-1/2*a3*t3² [5]

Relations complémentaires

d1+d2+d3=650 [6]

t1+t3=25 (puisque t2=20s) [7]

d1=4*d3 [8]

On a donc 8 équations avec 8 inconnues, a priori, il est possible de le résoudre. Après, il faut voir comment s'en sortir.

Je propose d'utiliser d1+d2+d3=650 en exprimant tout en fonction de v1.

[1]+[2] => d1=v1*t1/2

[4]+[5] => d3=v1*t3/2

dans [6], avec t1+t3=25, il vient v1*(12,5+20)=650, d'où v1 et le reste qui s'ensuit.

 

Lien vers le commentaire
Partager sur d’autres sites

  • 2 semaines plus tard...

La mise en équation du problème donne :

d1 = a1.t1²/2
v1 = a1.t1

d2 = v1.t2

d3 = v1.t3 - |a3|.t3²/2
0 = v1 - |a3|.t3

d1 + d2 + d3 = D

t1 + t2 + t3 = 45

t2 = 20

d1 = 4.d3

D = 650
-----------------------
La résolution aisée de ce système donne :

v1 = 20 m/s
t1 = 20 s , t2 = 20 s, t3 = 5 s
a1 = 1 m/s²
|a3| = 4 m/s²

d1 = 200 m , d2 = 400 m, d3 = 50 m

 

B-)

Lien vers le commentaire
Partager sur d’autres sites

Rejoindre la conversation

Vous pouvez publier maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous maintenant pour publier avec votre compte.

Invité
Répondre à ce sujet…

×   Collé en tant que texte enrichi.   Coller en tant que texte brut à la place

  Seulement 75 émoticônes maximum sont autorisées.

×   Votre lien a été automatiquement intégré.   Afficher plutôt comme un lien

×   Votre contenu précédent a été rétabli.   Vider l’éditeur

×   Vous ne pouvez pas directement coller des images. Envoyez-les depuis votre ordinateur ou insérez-les depuis une URL.

Chargement
 Share

×
×
  • Créer...
spam filtering