Toute l’activité

Ce flux se met à jour automatiquement     

  1. Aujourd’hui
  2. devoir maison math seconde

    Dans ton cas, et pour augmenter l'efficacité du forum, indique l'adresse mail de ton professeur et je lui posterai directement la réponse, ce qui évitera les opérations intermédiaires inutiles.
  3. aide exercice de math niveau seconde

    Barbidoux a répondu en utilisant le produit scalaire vec(AB)*vec(BC) notion que tu n'as pas forcément vue en classe. Si tu ne sais pas faire avec le produit scalaire, il reste à calculer AB2, BC2 et AC2 et voir si la réciproque du th. de Pythagore permet de conclure. Salut matinal à barbidoux.
  4. Exercice de maths à faire svp

    Montre ce que tu as fait. Le forum n'est pas un robot qui fera tes devoirs à ta place et gratuitement.
  5. Hier
  6. Exercice de maths à faire svp

    Bonjour j'ai un exercice de maths à faire , si quelqu'un peut m'aider s'il vous plaît ,voici l'énoncé : Pour fabriquer un coquetier , on a évidé un cylindre de révolution en bois de rayon OA=3cm et de hauteur IO=6cm en creusant un cône de sommet I , de même hauteur et de même base que le cylindre a) Calculer la génératrice IA au mm près b) calculer au degré près la mesure de l'angle de ouverture AIA de la surface latérale d'un patron de ce cône c) représenté en vrai grandeur un patron du cône révolution et calculer l'air total de ce patron en l'arrondissant au mm carré
  7. aide exercice de math niveau seconde

    vect(AB){4,-6}, vect(BC){8,6} et si D{x,y} alors vect(DC}{6-x,4-y} Pour que ABCD soit un parallélogramme il faut que vect(AB)=vect(DC) ==> 6-x=4 ==> x=2 et 4-y=-6 ==> y=10 ==>D{2,10} Pour que ABCD soit un rectangle il faut que vect(AB).vect(BC)=0 ce qui n'est pas le cas puisque vect(AB).vect(BC)=8
  8. aide exercice de math niveau seconde

    Dans le plan muni d’un repère orthonormé (O,I,J) on considère les points A(−6; 4), B(−2;−2), C(6; 4). 1. Déterminer par le calcul les coordonnées du point D telles que le quadrilatère ABCD soit un parallélogramme ? 2. Le quadrilatère ABCD est-il un rectangle ? Justifier.
  9. Bonjour comme je l'avais dit sur un précédant sujet nous allons a recevoir l’écrivaine Cécile Ladjali pour lui faire une surprise avent sont arrivé mon professeur de français nous a dit d’écrire une rédaction avec des mots qu'elle nous impose qui sont des personnage fictif inventé par Cécile Ladjali la dernière fois elle a eu un empêchement de dernière minute qui l'a empêcher de venir maintenant c'est sur elle viendra le jeudi 8 mars mais la dernière fois je n'avais pas donné ma rédaction en entier la voici pouvez vous me corriger je vous en remercie d’avance (certain terme comme tohu bohu,emily pearl m'on été imposé) La grotte au démon Il était une fois dans un petit village une petite fille du nom d’Émily Pearl. Ce village se trouvait non loin d’une grotte que les villageois nommaient la grotte au démon car des bruits d’une sonorité inconnue émanait de celle-ci. Un jour de l’an 1971 la petite Émily se baladait dans une ruelle de son village quand elle se retrouva nez à nez avec son pire ennemi Louis la mauvaise langue. C’est comme ça qu’elle le surnommait. « Hé tête de castor ! » s’écria le jeune garçon, Émily répliqua : « Je suis peut-être un castor mais toi tu es une langue de vipère ». Et s’ensuivit une série d’insultes or il se trouve que les deux jeunes gens étaient cousins. Leur, mère, était sœurs. Celles-ci sortirent de leur maison et « hé tête de castor ! » s’écrit le jeune garçon, Émily répliqua : « Je suis peut-être un castor mais toi tu es une langue de vipère ». Et s’ensuivit une série d’insultes. Or il se trouve que les deux jeunes gens étaient cousins. Leur mère était sœurs. Celles-ci sortirent de leur maison et s’écrièrent « mais ce n’est pas fini, quelle est la cause de tout ce tohu-bohu. » Les deux enfants furent grondés puis confrontés. Les parents imposèrent aux deux enfants de devenir amis « Si jamais vous ne devenez pas mais vous serez privée de sorti ». Emily se résolu à essayer de devenir son ami mais pas Louis. Vicieux il fit semblait d’accepter afin de tendre un piège à la petite fille." Quelques jours plus tard après avoir préparé son plant il invitait la jeune fille jouée elle acceptât gracieusement puis lui demandait quel serait le jeu auquel il devrait jouer il lui répondit « Un jeu que j’ai baptisé courage ou honnêteté* les règle son simple tu as le choix entre effectuer un acte que je te dirais de faire ou dire une vérité sur une question que je t’aurais posé il en va de même pour moi ». Emily intrigué par cet étrange jeu accepta de jouer puis le jeune louis proposa à la jeune fille de commencer et le jeune homme choisi d’effectuer une action alors la petite Émily lui dit de voler la tarte délicieuse et tant convoite de la vieille Gertrude qui était très radine. Alors Louis s’exécuta sans sourciller afin de mettre en confiance la jeune fille pour qu’ils puissent la manipuler. Après avoir récupérer la tarte Louis pris un morceau de la tarte tandis la main à la jeune fille qui acceptait volontiers puis la mangea il fit de même. Après s’être délecté de cette délicieuse tarte Louis proposa a Emily de continuer le jeu alors des deux enfant se lancèrent une séries de défis jusque au moment au le jeune garçon imposa a la jeune fille de pénétré la grotte au démon « alors le défi que je t’impose cette fois-ci sera de pénétré la grotte au démon ! » puis la jeune fille pris d’hésitation répliqua : « Mais tu es sur ce n’est pas dangereux » Louis répondit d’une voix ferme « j’ai accompli tous les défis que tu m’a proposé tu ne peux pas refusé ! » alors Emily apeuré accepta « c’est , c’est d’accord » Alors la jeune fille ce mis en route de la grotte au démon plus elle s’approchait de celle-ci plus les bruit étrange qu’elle émanait était fort mais aussi il était de plus en plus perceptible elle distinguais un tigres non un éléphant non un ours ou plutôt tous ces cris d’animaux simultané . Emily se tenais enfin devant l’entrée de la grotte est ces bruits ne venait pas du profond de la grotte mais il suffisait de s’enfoncer légèrement à l’intérieur pour atteindre ces bruits. Elle rentre dans la grotte en s’approchant progressivement chaque pas la rapproche des bruits. Soudain Emily s’arrête devant un feuillage car le bruit semblait venir de celui-ci. Elle sépara le feuillage en deux puis elle y trouvât un nid avec des oiseau qui poussait des cris de diverse animaux le mystère était résolu les cris ne venait pas d’une bête sauvage mais d’une famille d’oiseau imitateur**. Après être rentré dans son village elle expliqua l’histoire au villageois qui fut acclamer par les villageois le cousin de la jeune fille louis essayer d’en tirer profit mais il n’obtint pas ce qu’il aurait souhaité car il fut puni pour avoir envoyé sa cousine sans défense elle l’histoire de la jeune Emily fut connue à travers tous le village et elle fut transmis de génération en génération. Morale : Il ne faut pas se fier à ce qu’on entend mais plutôt a ce que le vois *Comme vous l’aurez deviné il s’agit d’action ou vérité ** il s’agit d’une espèce que l’on nomme oiseau lyre qui après une écoute répéter d’un certain son peut le répéter à la perfection
  10. devoir maison math seconde

    file:///C:/Documents and Settings/Administrateur/Mes documents/downloads/dm_fevrier.pdf svp je ne comprends rien j'ai sauté la 3eme et je n'y arrive pas et je dois le rendre par mail dans 2 heures svp merci beaucoup dm_fevrier.pdf
  11. Rédaction à la manière de La Bruyère

    On continue en MP
  12. Rédaction à la manière de La Bruyère

    Ignave se lève mais il se sent mou , épuisé , amorphe ; le moindre effort devient pour lui quelque chose d'insupportable ; il ne veut pas fatiguer la personne fatiguée qu'il est ; il veut resté dans sa zone de confort ; il ne veut pas qu'on l'apostrophe ; nu qu'on lui parle . Sa salive épaisse , visqueuse et blanchâtre il ne veut pas l'utiliser pour les autres ; il préfère la laisser s'écouler de sa bouche doucement lorsqu'il se réveille le matin ; il s'étire ostentatoirement comme un ours en achevant son hibernation . Ses déplacements il les effectue le moins avec ses pieds ;"Il ne veut pas bousculer ses membres encore léthargiques , il donne le plus gros travail à ses collègues ; il veut rester dans son cocon, où rien ne le perturbera ; il regarde tout le monde s'activer tandis qu'il resté cloué sur son siège ; son corps dépend à cette fatigue ; il est fragile , pale , cadavérique ; il ne sait plus utiliser ses membres qui ne bougent plus ; il ne sait plus comment faire pour se mettre en mouvement ; paralysé sur son lit ; mais c'est là qu'il se sent bien ; le temps passe mais il ne veut pas se déplacer ; demande à son entourage de faire ce qu'il doit faire ; son corps devient comme fossilisé ; il commence à se fossiliser ; et c'est la qu'une pousse de baobab fait son apparition .
  13. Dissert philo devoir et bonheur

    MERCI mais j’ai déjà déjà les arguments mais je bloque sur le plan et la problematisation du sujet
  14. DM

    Merci de votre aide
  15. maths 3éme

    bonjour tu as oublié la moitié de l'énoncé f est une fonction linéaire ?
  16. Rédaction à la manière de La Bruyère

    Ć’est fait ! Et merci beaucoup !
  17. maths 3éme

    soit la fonction F(1) =-1 donne l'image de 0 de 4 de 2
  18. SECOND DEGRE

    tableau de signes
  19. Dissert philo devoir et bonheur

    L'introduction (et la conclusion) s'écrivent APRES l'argumentation . Il faut d'abord trouver les arguments que tu vas développer . Le bonheur , qu'est-ce ? Autant d'individus, autant de définitions . Pour les uns, c'est la réussite matérielle, les autres , la réussite affective , les autres encore, le succès médiatique, la création artistique , le dévouement à une cause , ou la santé du corps, la beauté physique, etc . Bonheur , dans ce dernier cas, équivaut à bien-être . Le bonheur en soi est un état permanent incompatible avec le déroulement temporel dans lequel nous vivons .Les religions l'ont bien compris en promettant le bonheur dans l'au-delà , dans l'immobile éternité après la mort , et fondent leurs principes moraux sur cette "certitude" . Sur terre , dans notre courte ou longue vie, le bonheur serait une somme de petits bonheurs passagers , l'absence de malheurs . Certains "bonheurs" dépendent de nous, d'autres , non : on appelle cela la chance . Rechercher le bonheur semble donc suspect : ne s'exerce-t-il pas au détriment des autres ? Peut-être le bonheur vient-il lorsque l'on s'y attend le moins . Chercher le bonheur des autres , de ceux que l'on aime, par contre, peut s'apparenter à un devoir moral . Le résultat n'est pas certain . Peut-on faire rejaillir son bonheur personnel sur les autres , ou déclencher leur envie , leur jalousie ?
  20. SECOND DEGRE

    Je suis bloquer sur les tableaux de signe !
  21. Gare aux épargnants trop gourmants

    Augmenter une valeur de x% revient à multiplier cette valeur par 1+(x/100). Ex : ajouter 3%, c'est multiplier par 1,03. Ajouter 12%, c'est multiplier par 1,12. Diminuer une valeur de x %, c'est multiplier par 1-(x/100). Ex : diminuer de 5%, c'est multiplier par 0,95. Diminuer de 17%, c'est multiplier par 0,83.
  22. Rédaction à la manière de La Bruyère

    Envoie en MP . Bon travail .
  23. SECOND DEGRE

    si tu veux g (x) est toujours positive et pour f(x) positive quand ] -oo;1[ union ]5;+oo[ f(x) négative sur ]1;5[
  24. Gare aux épargnants trop gourmants

    Bonjour je ne comprend pas le premier exercice, pouvez vous m'aider svp merci d'avance
  25. SECOND DEGRE

    Dresser le tableau de signe de g n'est pas possible ?
  26. Equivalents

    Bonjour, J'ajoute que c'est le plus souvent en ayant recours aux développements limités, éventuellement généralisés ou asymptotiques, qu'on obtient les équivalents. Noter d'ailleurs qu'il est toujours plus prudent, sauf cas très simples, de travailler avec des DL que directement avec des équivalents. La raison est qu'on maîtrise alors l'ordre de grandeur des restes , notamment quand on manipule des sommes. Additionner froidement deux équivalents peut conduire aux pires erreurs. Par contre on peut les multiplier ou les diviser sans inconvénient.
  27. SECOND DEGRE

    non c'est faux si g(x) = 1/2 (3x-2)² +1 on pose : 1/2 (3x-2)² +1 = 0 (3x-2)² = -1 * 2 = -2 or un carré ne peut pas être négatif donc pas de solutions g(x) ne s'annule jamais et ça veut dire que graphiquement que la courbe de g ne traverse pas l'axe des abscisses. comme tu le vois sur le graphique, elle est au dessus. axe de symétrie = la droite qui passe par le sommet
  1. Charger plus d’activité